Diffuse Scattering

• Anticipatory (trick) question: If you have an x-ray or neutron detector looking at a small sample volume, which will scatter more x-rays or neutrons into the detector 1 atom 100 atoms or 1000 atoms?

Answer: Depends!

Diffuse Scattering

Gene E. Ice

Materials Science and Technology Division Oak Ridge National Laboratory, USA

National School on Neutron and X-ray Scattering ORNL/SNS August 2012

Presentation concentrates year graduate-level course into 1 hour

- Skip mathematical complexities
- Expose to range of applications
- Develop *intuition* for length scales
- Talk like x-ray/neutron scattering guru
 - Reciprocal space
 - Debye Temperature
 - Laue monotonic
 - Krivoglaz defects of 1st/2nd kinds!

Great for cocktail parties or impressing attractive strangers-Important for recognizing origins of diffuse scattering!

Diffuse scattering poised for a revolution!

- Synchrotron sources /new tools enable new applications
 - Intensity for weak signals
 - High energy for simplified data analysis
 - Small (dangerous) samples
- Advanced neutron instruments emerging
 - Low Z elements
 - Magnetic scattering
 - Different contrast
- New theories provide direct link between experiments and first-principles calculations

Experiment

Theory

Major controversies have split leading scientists in once staid community!

What you already know- arrangement of atoms redistributes scattering

• Familiar light example

Practical applications- zero background plates for

powder diffraction

• Wave→diffraction

X-ray or neutron beam

You already know that Bragg reflections occur when scattering amplitudes add *constructively*

If crystal lattice of atoms leads to Bragg peaks-what happens when an atom is out of place/missing?

- Weakens Bragg peaks
- Redistributes scattering intensity in reciprocal space

Diffuse scattering due to *local* (short ranged) correlations/ fluctuations

All have in common reduced correlation length!

You already know length scales are inverted!

- Big real→small reciprocal
- Small real→big reciprocal
- Same behavior for correlation length scales
 - Long real-space
 correlation lengths
 scattering close to
 Bragg peaks

If you remember nothing else!

Krivoglaz classified defects by effect on Bragg Peak

Intensity

Defects of 1st kind

- Atomic displacements remain finite
- Bragg width unchanged
- Bragg intensity decreased
- Diffuse redistributed in reciprocal space

Defects of 2nd kind

- No longer distinct Bragg peaks
- Displacements continue to grow with crystal size

Who the heck was Krivoglaz?

- Brilliant Ukrainian scientist
- Dissertation –predated Mossbauer's work

 Pioneered a general way of categorizing and studying defects using x-rays/neutrons

Dimensionality Krivoglaz defect of second kind- influences diffraction

• Small size→broad diffraction

• Polycrystalline

a. Amorphous

b. nanocrystalline

c. crystalline

Single crystals and surfaces -truncation rods

- Diffuse scattering perpendicular to surface
- Connect to Bragg Peaks
- Intensity falloff indicates roughness
 - Slow (smooth)
 - Fast (rough)

Thermal motion-Temperature Diffuse Scattering-(TDS) -defect of 1st kind

- Atoms coupled through atomic bonding
- Uncorrelated displacements at distant sites
 - (finite)
- Phonons (wave description)
 - Amplitude
 - Period
 - Propagation direction
 - Polarization (transverse/compressional)

Sophisticated theories from James, Born Von Karmen, Krivoglaz

A little math helps for party conversation

• Decrease in Bragg intensity scales like e^{-2M}, where

$$2M = 16\pi^2 \left\langle u_s^2 \right\rangle \frac{\sin^2 \theta}{\lambda^2}$$

• e^{-2M} shrinks (**bigger** effect) with θ (q)

High temperature

Displacements, u_s depend on *Debye Temperature* θ_D - *Bigger* θ_D - *smaller* displacements!

TDS makes beautiful patterns reciprocal space

- Iso- intensity contours
 - Butterfly
 - Ovoid
 - Star

• Transmission images reflect symmetry of reciprocal space and TDS patterns

Chiang et al. Phys. Rev. Lett. 83 3317 (1999)

X-rays scattering measurements infer phonon dispersion from quasi-elastic scattering

- Phonon energies *milli-eV*
- Synchrotron based high-E resolution X-ray beamlines can measure phonons *in some cases*
- Emerging area for highbrilliance x-ray sources

Phonon spectrum gives natural vibration frequencies in different crystal directions!

Inelastic neutron/x-ray scattering directly measures phonon spectra in symmetry directions

- Inelastic neutron scattering confirms origins of negative Grüneisen coefficient in cubic ZrW₂O₈ (negative thermal expansion)disordering phase transition.
- Unusual thermal displacements often associated with phase transitions.

Phonon energies similar to meV neutron energies.

Extra diffuse scattering often observed from materials near phase transitions

- Distribution of configurations at finite temperature
 - Mixed phases (1st order)
- Extended displacements
- High-pressure
 - higher-co-ordination
 - Longer NN bond distance
 - Smaller volume/atom

R-3c \rightarrow I2/a displacive transition observed in a single crystal of Cr₂O₃ at 80 GPA

Complete transformation induced by heating the sample to 2000 K

C22 \rightarrow C23 transition in Fe₂P at 10 GPa Dera et al. (2008) *Gophys. Res. Lett.*, **35**, L10301

High-energy Synchrotron X-rays are revolutionizing TDS measurements

- Small samples
- Fast (time resolved/ combinatorial)
 - Experiments in seconds rather than days
- Materials that cannot be studied with neutrons

Pu experiment

Pu theory

Neutrons uniquely sensitive to low Z

• Deuterium cross section large

Phonon energy comparable to neutron energy

• New insights into dynamics of

"molecular crystals" splitting

Welberry et al. ISIS

Experiment

Theory

Often TDS mixed with additional diffuse scattering

TDS must often be removed to reveal other diffuse scattering

Alloys can have another *type 1* defect-*site* substitution

- Long range
 - Ordering (unlike neighbors)
 - Phase separation (like neighbors)
- Short ranged
 - Ordering
 - Clustering (like neighbors)

Each Au has 8 Cu near-neighbors

Alternating planes of Au and Cu

Redistribution depends on kind of correlation

Clustering intensity

→ fundamental sites

Random causes *Laue monotonic*

Short-range ordering
→ superstructure sites

Neutron/ X-rays Complimentary For Short-range Order Measurements

- Chemical order diffuse scattering proportional to contrast $(f_A-f_B)^2$
- Neutron scattering cross sections
 - Vary wildly with isotope
 - Can have + and sign
 - Null matrix
 - Low Z, high Z comparable
- X-ray scattering cross section
 - Monotonic like Z²
 - Alter by anomalous scattering

Neutrons can select isotope to <u>eliminate</u> Bragg scattering

• Bragg scattering $(c_a f_a + c_b f_b)^2 = 0$

-3

• Laue (diffuse) scattering

$$c_a c_b (f_a - f_b)^2 = 3$$

Isotopic purity important as different isotopes have distinct scattering cross sections- only one experiment ever done!

X-ray anomalous scattering can change x-ray contrast

- Chemical SRO scattering scales like $(f_a-f_b)^2$
- Static displacements scale like (f_a-f_b)
- TDS scales like $\sim f_{average}^2$

Atomic size (static displacements) affect phase stability/ properties

- Ionic materials (Goldschmidt)
 - Ratio of Components
 - Ratio of radii
 - Influence of polarization
- Metals and alloy phases (hume-Rothery)
 - Ratio of radii
 - Valence electron concentration
 - Electrochemical factor

Grand challenge -include deviations from lattice in modeling of alloys

Measurement and theory of atomic size are hard!

• Theory- violates repeat lattice approximation- every unit cell different!

- Experiment
 - EXAFS marginal (0.02 nm) in dilute samples
 - Long-ranged samples have balanced forces

Systematic study of bond distances in Fe-Ni alloys raises

ORNL 98-7348A/rra

- Why is the Fe-Fe bond distance stable?
- Why does Ni-Ni bond swell with Fe concentration?
- Are second near neighbor bond distances determined by first neighbor bonding?

High-energy x-ray measurements revolutionize studies of phase stability

- Data in *seconds* instead of *days*
- Minimum absorption and stability corrections
- New analysis provides direct link to firstprinciple

Max Planck integrates diffuse x-ray scattering elements!

Measurements show competing tendencies to order

- Both L1₂ and Z₁ present
- Compare with first principles calculations

Reichert et al. Phys. Rev. Lett. 95 235703 (2005)

Dislocations -Krivoglaz defect of the second kind

• Unbounded displacement with increased number

Broaden Bragg peak

Fundamental to plasticity

Influence of number and orientation of dislocations can be quantified

$$\Box$$
=[-1-21], n=[-111], b=[101]

 \Box =[-11-2], n=[1-1-1], b=[110]

 \square =[1-1-2], n=[1-11], b=[110]

Intense microbeams/area detectors provide new direction in diffuse scattering

- Tiny crysals (20 μm)
 - Natural polycrystals
 - No special sample prep
- Combinatorial
- Dangerous samples

Single-crystal-quality defect characterization

Hazardous *polycrystal* samples

Small irradiated volumes simplify handling/preparation

- Activity ~volume (10⁻⁵)
- Much less waste (10⁻⁷)
- Polycrystalline samples easier obtaincloser to real materials

Microsample ~10⁻³ mm³ 100-1000 samples

Diffuse microdiffraction holds promise for irradiated materials

- Powerful single crystal techniques applied to polycrystals
- ~4-6 Orders of magnitude lower activity
 - Safer/lower backgrounds
- Cryocooled samples to study initial defects
- New information about point/line/mesoscale defect interactions

Successful demonstration experiments!

Vacancies, interstitials, small dislocation loops, coherent precipitates are additional type 1 defects

Latic Diotos

Coluent Respitate

Numerical calculations determine quantitative cross sections Bragg Peak

- Sign of diffuse scattering reverses for vacancy/interstitials
- For interstitial loops- enhanced scattering at q=bH/4R

 For coherent precipitates enhancement at q=-εH

Micro-diffuse scattering applied to High Energy, Self-Ion Implantation in Si

•cleave sample in cross-section

•translate to probe depth dependence

Spatial separation of recoils and vacancies due to momentum transfer

Yoon, Larson, Tischler, Haynes

X-ray Diffuse Scattering

Huang theory \Rightarrow for $Q \ll 1/R$, $I \propto Kb\pi R^2/Q^4$

Depth Dependence of Size Distributions for Ion-Implanted Si

Corelli SNS beamline specialized for diffuse scattering with elastic Discrimination

 Complex disorder and short-range correlations

X-ray diffuse scattering at Femtosecond

Resolution

 Ultra-brilliant LCLS opens new experimental possibilities

 Transient behaviors at femtosecond time scales demonstrated.

Lindenberg et al. PRL 100 135502 (2008)

New directions in diffuse scattering

- High-energy x-ray
- Microdiffuse x-ray scattering
 - Combinatorial
 - Easy sample preparation

- Diffuse neutron data from every sample
- Interpretation more closely tied to theory
 - Modeling of scattering xray/neutron intensity

Intense synchrotron/neutron sources realize the promise envisioned by pioneers of diffuse x-ray scattering

- M. Born and T. Von Karman 1912-1946- TDS
- Andre Guiner (30' s-40' s)-qualitative size
- I. M. Lifshitz J. Exp. Theoret. Phys. (USSR) **8** 959 (1937)
- K. Huang *Proc. Roy. Soc.* **190A** 102 (1947)-long ranged strain fields
- J. M Cowley (1950) J. Appl. Phys.-local atomic size
- Warren, Averbach and Roberts *J. App. Phys* **22** 1493 (1954) *-SRO*
- Krivoglaz JETP 34 139 1958 chemical and spatial fluctuations

Other references:

- X-ray Diffraction- B.E. Warren Dover Publications New York 1990.
- http://www.uni-wuerzburg.de/mineralogie/crystal/teaching/dif a.html
- Krivoglaz vol. I and Vol II.

Diffuse scattering done by small community

Diffuse scattering song

Come eager young scholars- so tender and new I'll teach you diffraction- what I says mostly true Between the Bragg Peaks lies a world where you see Fluctuations and defects- they stand out plane-ly

Chorus

For its dark as a dungeon between the Bragg peaks But here in the darkness- each defect speaks It gathers- from throughout- reciprocal space And re-distributes all over the place.

Between the Bragg peaks - one thing that we see Is TDS on our CCD Intensity totals are conserved- you can't win It steals from the Bragg peaks that stay very thin

Substitutional alloys can cause quite a stir
The shorter the length scale the greater the blur
With care you can find out the bond length between
Each atom pair type-the measurements clean

Dislocations and other- type 2 defects
Destroy the Bragg peaks -they turn them to wrecks
But near the Bragg peaks- you still can see
Intense diffraction continuously

Many -are- the defects you find Between the Bragg peaks where others are blind So go tell your friends and impress your boss You' ve new understanding -with one hours loss

